本文目录一览:
- 1、矩阵的逆怎么求
- 2、矩阵的逆怎么计算?
- 3、逆矩阵怎么求?
- 4、求矩阵的逆的三种方法
- 5、逆矩阵怎么求?
矩阵的逆怎么求
运用初等行变换法。具体如下:
将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵B=[A,I]对专B施行初等行变换,即对A与I进行属完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A的逆矩阵。
如求
的逆矩阵
故A可逆并且,由右一半可得逆矩阵A^-1=
扩展资料:
矩阵的应用:
在几何光学里,可以找到很多需要用到矩阵的地方。几何光学是一种忽略了光波波动性的近似理论,这理论的模型将光线视为几何射线。
采用近轴近似,假若光线与光轴之间的夹角很小,则透镜或反射元件对于光线的作用,可以表达为2×2矩阵与向量的乘积。这向量的两个分量是光线的几何性质(光线的斜率、光线跟光轴之间在主平面。
这矩阵称为光线传输矩阵,内中元素编码了光学元件的性质。对于折射,这矩阵又细分为两种:“折射矩阵”与“平移矩阵”。折射矩阵描述光线遇到透镜的折射行为。平移矩阵描述光线从一个主平面传播到另一个主平面的平移行为。
矩阵的逆怎么计算?
将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n矩阵的逆怎么求的矩阵
对B施行初等行变换矩阵的逆怎么求,即对A与I进行完全相同矩阵的逆怎么求的若百干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为矩阵的逆怎么求了A的逆矩阵。
如求
的逆矩阵A-1。
故A可逆并且,由右一半可得逆矩阵A-1=
扩展资料矩阵的逆怎么求:
可逆矩阵的性质定理
1、可逆矩阵一定是方阵。
2、如果矩阵A是可逆的,其逆矩阵是唯一回的。
3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)
5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。
6、两个答可逆矩阵的乘积依然可逆。
7、矩阵可逆当且仅当它是满秩矩阵。
逆矩阵怎么求?
逆矩阵的求法:
1、利用定义求逆矩阵
设A、B都是n阶方阵矩阵的逆怎么求, 如果存在n阶方阵B 使得AB=BA=E矩阵的逆怎么求, 则称A为可逆矩阵矩阵的逆怎么求, 而称B为A的逆矩阵。
2、运用初等行变换法
将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵B=(A,I])对B施行初等行变换,即对A与I进行完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为矩阵的逆怎么求了A的逆矩阵。
3、增广矩阵法
如果要求逆的矩阵是A,则对增广矩阵(A E)进行初等行变换,E是单位矩阵,将A化到E,此时此矩阵的逆就是原来E的位置上的那个矩阵,原理是 A逆乘以(A E)= (E A逆)初等行变换就是在矩阵的左边乘以A的逆矩阵得到的。
4、待定系数法
待定系数法顾名思义就是对未知数进行求解。用一个新的包含未定因子的多项式来表达多项式,从而获得一个恒等式。接着,利用恒等式的特性,推导出一类系数必须满足的方程或方程,再由方程组或方程组得到待确定的系数,或确定各系数之间的对应关系,称为待定系数法。
求矩阵的逆的三种方法
求矩阵的逆的三种方法:1.待定系数法、2.伴随矩阵求逆矩阵、3.初等变换求逆矩阵。 扩展资料
在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个已持续几个世纪以来的课题,是一个不断扩大的研究领域。 矩阵分解方法简化了理论和实际的'计算。 针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。 无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵。
逆矩阵怎么求?
1、伴随矩阵法
如果矩阵A可逆,则
的余因子矩阵的转置矩阵。
(|A|≠0,|A|为该矩阵对应的行列式的值)
A的伴随矩阵为
其中Aij=(-1)i+jMij称为aij的代数余子式。
2、初等行变换法
在行阶梯矩阵的基础上,即非零行的第一个非零单元为1,且这些非零单元所在的列其它元素都是0。综上,行最简型矩阵是行阶梯形矩阵的特殊形式。
一般来说,一个矩阵经过初等行变换后就变成了另一个矩阵,当矩阵A经过初等行变换变成矩阵B时,一般写作 可以证明:任意一个矩阵经过一系列初等行变换总能变成行阶梯型矩阵。
方法是一般从左到右,一列一列处理先把第一个比较简单的(或小)的非零数交换到左上角(其实最后变换也行)。
用这个数把第一列其余的数消成零处理完第一列后,第一行与第一列就不用管,再用同样的方法处理第二列(不含第一行的数)。
扩展资料
性质定理:
1、可逆矩阵一定是方阵。
2、如果矩阵A是可逆的,其逆矩阵是唯一的。
3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)
5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。
6、两个可逆矩阵的乘积依然可逆。
参考资料来源:百度百科-逆矩阵