本文目录一览:
求C60的物理性质
C60在室温下为紫红色固态分子晶体,有微弱荧光
C60分子的直径约为7.1埃(1埃= 10^ -10 米即一百亿分之一米);
C60的密度为1.68g/cm^
C60不溶于水等强极性溶剂,在正己烷、苯、二硫化碳、四氯化碳等非极
C60的物理性质
C60在室温下为紫红色固态分子晶体碳60的物理性质,有微弱荧光。C60分子的直径约为7.1埃(1埃= 10^ -10 米即一百亿分之一米)碳60的物理性质,C60的密度为1.68g/cm^3。分子轨道计算表明,足球烯具有较大的离域能。C60具有金属光泽,有许多优异性能,如超导、强磁性、耐高压、抗化学腐蚀、在光、电、磁等领域有潜在的应用前景。
溶解性
富勒烯在大部分溶剂中溶得很差,通常用芳香性溶剂,如甲苯、氯苯,或非芳香性溶剂二硫化碳溶解。纯富勒烯的溶液通常是紫色,浓度大则是紫红色,C70的溶液比C60的稍微红一些,因为其他在500nm处有吸收;其他的富勒烯,如C76、C80等则有不同的紫色。富勒烯是迄今发现的唯一在室温下溶于常规溶剂的碳的同素异性体。
有些富勒烯是不可溶的,因为他们的基态与激发态的带宽很窄,如C28,C36和C50。C72也是几乎不溶的,但是C72的内嵌富勒烯,如La2@C72是可溶的,这是因为金属元素与富勒烯的相互作用。早期的科学科学家对于没有发现C72很是疑惑,但是却有C72的内嵌富勒烯。窄带宽的富勒烯活性很高,经常与其他富勒烯结合。化学修饰后的富勒烯衍生物的溶解性增强很多,如PC61BM室温下在氯苯中的溶解度是50mg/mL。C60和C70在一些溶剂的溶解度列于左表,这里的溶解度通常是饱和浓度的估算值。
导电性
C60常态下不导电。因为C60大得可以将其他原子放进它内部,并影响其物理性质,因而不可导电。另外,由于C60有大量游离电子,所以若把可作β衰变的放射性元素困在其内部,其半衰期可能会因此受到影响。
超导性
在可以大量生产C60后其很多性质被发现,很快Haddon等人 发现碱金属掺杂的C60有金属行为,1991年发现钾掺杂的C60在18K时有超导行为这是迄今最高的分子超导温度,之后大量的金属掺杂富勒烯的超导性质被发现。研究表明超导转化温度随着碱金属掺杂富勒烯的晶胞体积而升高。 铯可以形成最大的碱金属离子,因此铯掺杂的富勒烯材料被广泛研究,Cs3C60As在38K时超导性质, 不过是在高压下。常压下33K时具有最高超导转化温度的是 Cs2RbC60。 C60固体超导性的BCS理论认为,超导转变温度随着晶胞体积的增加而升高,因为C60分子间的间隔与费米能级N(εF)的态密度的升高相关,因此科学家们做了大量的工作试图增加富勒烯分子间的距离,尤其是将中性分子插入A3C60晶格中来增加间距同时保持C60的价态不变。不过,这种氨化技术意外地得到了新奇的富勒烯插入复合物的特别的性质:Mott-Hubbard转变以及C60分子的取向/轨道有序和磁结构的关系。 C60固体是由弱相互作用力组成的,因此是分子固体,并且保留了分子的性质。一个自由的C60分子的分立能级在固体中只是很弱的弥散,导致固体中非重叠的带间隙很窄,只有0.5eV。未掺杂的 C60固体,5倍 hu带是其HOMO能级,3倍的t1u带是其空的LUMO能级,这个系统是带禁阻的。但是当C60固体被金属原子掺杂时,金属原子会给t1u带电子或是3倍的t1g带的部分电子占据有时会呈现金属性质。虽然它的t1u带是部分占据的,按照BCS理论A4C60 的t1u带是部分占据的应该有金属性质,但是它是一个绝缘体,这个矛盾可能用Jahn-Teller效应来解释,高对称分子的自发变形导致了它的兼并轨道的分裂从而得到了电子能量。这种Jahn-Teller型的电子-声子作用在C60固体中非常强以致于可以破坏了特定价态的价带图案。窄带隙或强电子相互作用以及简并的基态对于理解并解释富勒烯固体的超导性非常重要。电子相互斥力比带宽大时,简单的Mott-Hubbard模型会产生绝缘的局域电子基态,这就解释了常压时铯掺杂的C60固体是没有超导性的。电子相互作用驱动的t1u电子的局域超过了临界点会生成Mott绝缘体,而使用高压能减小富勒烯相互间的间距,此时铯掺杂的C60固体呈现出金属性和超导性。
关于C60固体的超导性还没有完备的理论,但是BCS理论是一个被广泛接受的理论,因为强电子相互作用和Jahn-Teller电子-声子偶合能产生电子对,从而得到较高的绝缘体-金属转变温度。
磁性
阿勒曼(Allemand)等人在C60的甲苯溶液中加入过量的强供电子有机物四(二甲氨基)乙烯(TDAE),得到了C60(TDAE)C0.86的黑色微晶沉淀,经磁性研究后表明是一种不含金属的软铁磁性材料。居里温度为16.1K,高于迄今报道的其它有机分子铁磁体的居里温度。由于有机铁磁体在磁性记忆材料中有重要应用价值,因此研究和开发C60有机铁磁体,特别是以廉价的碳材料制成磁铁替代价格昂贵的金属磁铁具有非常重要的意义。
碳60的物理性质和化学性质有哪些?
颜色与性状
C60在室温下为紫红色固态分子晶体,有微弱荧光
分子大小
C60分子的直径约为7.1埃(1埃= 10^ -10 米即一百亿分之一米);
密度
C60的密度为1.68g/cm^3
溶解性
C60不溶于水等强极性溶剂,在正己烷、苯、二硫化碳、四氯化碳等非极性溶剂中有一定的溶解性;
导电性
C60常态下不导电。因为C60大得可以将其他原子放进它内部,并影响其物理性质,因而不可导电。另外,由于C60有大量游离电子,所以若把可作β衰变的放射性元素困在其内部,其半衰期可能会因此受到影响。
超导性
1991年,赫巴德(Hebard)等首先提出掺钾C60具有超导性,超导起始温度为18K,打破了有机超导体(Et)2Cu[N(CN)2]Cl超导起始温度为12.8K的纪录。不久又制备出Rb3C60的超导体,超导起始温度为29K。掺杂C60的超导体已进入高温超导体的行列。研究显示,这类材料是以晶格里的电洞来传导电流(类似p型半导体),若加入其它分子(例如三溴甲烷)来拉长晶格间距,还可以有效地提升其超导相变温度至117K。我国在这方面的研究也很有成就,北京大学和中国科学院物理所合作,成功地合成了K3C60和Rb3C60超导体,超导起始温度分别为8K和28K。有科学工作者预言,如果掺杂C240和掺杂C540,有可能合成出具有更高超导起始温度的超导体。
磁性
阿勒曼(Allemand)等人在C60的甲苯溶液中加入过量的强供电子有机物四(二甲氨基)乙烯(TDAE),得到了C60(TDAE)C0.86的黑色微晶沉淀,经磁性研究后表明是一种不含金属的软铁磁性材料。居里温度为16.1K,高于迄今报道的其它有机分子铁磁体的居里温度。由于有机铁磁体在磁性记忆材料中有重要应用价值,因此研究和开发C60有机铁磁体,特别是以廉价的碳材料制成磁铁替代价格昂贵的金属磁铁具有非常重要的意义。
化学性质
一、氧化还原反应:
在光照的条件下将C60与O2反应生成环氧化物C60O,但这种环氧化物不稳定,用矾土分离时能还原成C60。
二、加成反应:
C60可以与氢或卤素单质进行加成。把其完全氢化便得绒毛球烷(Fuzzyball),化学式为C60H60(加成进的氢原子有可能C60在笼内也可能在C60外部)。烷基自由基R可与C60反应生成RC60加和物,RC60可生成C60直接键和哑铃状二聚体RC60-C60R。
三、与金属的反应:
C60与金属的反应分为两种情况:一种是金属被置于C60碳笼的内部;另一种是金属位于C60碳笼的外部:
1)C60碳笼内配合物生成反应。C60碳笼为封闭的中空的多面体结构,其内腔直径为7.1埃,内部可嵌入原子、离子或小分子形成新的团簇分子,C60 + AC60(A)。Smalley等人现已发现能与C60生成C60(A)的金属有:K、Na、Cs、La、Ba、Sr、U、Y、Ce、Sm、Eu、Gd、Tb、Ho、Th等。除金属外,He、Ne等惰性气体及LiF、LiCl、NaCl等极性分子亦可移置C60笼中。
2)C60碳笼外键合反应。Ohno等人发现能与C60键合的金属有:V、Fe、Co、Ni、Rh、Cu、La、Yb、Ag等。
四、颜色反应
C60可以溶于二硫化碳中。颜色呈紫红色。
碳60是什么?它有什么用?能做什么?物理性质是什么?化学性质呢?
碳60是一种由60个碳原子构成的分子,形似足球,又名足球烯。
用途:具有特殊的化学活性,能进行加成反应而生成各种衍生物。
C₆₀物理性质:
在室温下为紫红色固态分子晶体,有微弱荧光。分子的直径约为7.1埃(1埃= 10⁻¹º米,即一百亿分之一米),密度为1.68g/cm3。分子轨道计算表明,足球烯具有较大的离域能。具有金属光泽,有许多优异性能,如超导、强磁性、耐高压、抗化学腐蚀。
C₆₀化学性质:
会发生周环反应、加氢还原、羟基反应、开孔反应、氧化还原、加成反应、金属反应、颜色反应等一系列化学反应。
C60是单纯由碳原子结合形成的稳定分子,它具有60个顶点和32个面,其中12个为正五边形,20个为正六边形。
扩展资料:
研发历程:
1971年,大泽映二发表《芳香性》一书,其中描述了C₆₀分子的设想。
1980年,饭岛澄男在分析碳膜的透射电子显微镜图时发现同心圆结构,就像切开的洋葱,这是C₆₀的第一个电子显微镜图。 1983年,克罗托蒸发石墨棒产生的碳灰的紫外可见光谱中发现215nm和265nm的吸收峰,他们称之为“驼峰”,他们推断出这是富勒烯产生的。
1984年,富勒烯的第一个光谱证据是在1984年由美国新泽西州的艾克森实验室的罗芬等人发现的,但是他们不认为这是C₆₀等团簇产生的。
1985年,英国化学家哈罗德·沃特尔·克罗托博士和美国科学家理查德·斯莫利等人在氦气流中以激光汽化蒸发石墨实验中首次制得由60个碳组成的碳原子簇结构分子C₆₀,并推测这个团簇是球状结构。
1990年,克利斯莫(Kriischmer)等人第一次报道了大量合成C₆₀的方法,才使得C₆₀的研究得以大量展开。
参考资料来源:百度百科——碳60