本文目录一览:
- 1、逆矩阵怎么求?
- 2、逆矩阵的求法要有例子的
- 3、怎么求矩阵的逆矩阵
- 4、逆矩阵怎么求?
逆矩阵怎么求?
在
A
的右侧接写一个单位矩阵,然后对三行六列矩阵施行初等行变换,
(1、交换任意两行;2、一行乘以任意实数;3、一行乘以任意实数加到另一行)
把前面
A
化为单位矩阵,后面的单位矩阵就化为了
A
的逆矩阵。
你试试,一定能自己完成。
逆矩阵的求法要有例子的
设A是数域上的一个n阶矩阵逆矩阵的求法,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则逆矩阵的求法我们称B是A的逆矩阵,而A则被称为可逆矩阵。
例如:
扩展资料
性质:
1、可逆矩阵一定是方阵。
2、如果矩阵A是可逆的,其逆矩阵是唯一的。
3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)
5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。
6、两个可逆矩阵的乘积依然可逆。
7、矩阵可逆当且仅当它是满秩矩阵。
证明方法:
逆矩阵是对方阵定义的,因此逆矩阵一定是方阵。
设B与C都为A的逆矩阵,则有B=C,假设B和C均是A的逆矩阵,B=BI=B(AC)=(BA)C=IC=C,因此某矩阵的任意两个逆矩阵相等。
由逆矩阵的唯一性,A-1的逆矩阵可写作(A-1)-1和A,因此相等。矩阵A可逆,有AA-1=I 。(A-1) TAT=(AA-1)T=IT=I ,AT(A-1)T=(A-1A)T=IT=I
由可逆矩阵的定义可知,AT可逆,其逆矩阵为(A-1)T。而(AT)-1也是AT的逆矩阵,由逆矩阵的唯一性,因此(AT)-1=(A-1)T。
在AB=O两端同时左乘A-1(BA=O同理可证),得A-1(AB)=A-1O=O,而B=IB=(AA-1)B=A-1(AB),故B=O,由AB=AC(BA=CA同理可证),AB-AC=A(B-C)=O,等式两边同左乘A-1,因A可逆AA-1=I 。得B-C=O,即B=C。
怎么求矩阵的逆矩阵
求矩阵的逆常用的有如下三种做法。经济数学团队帮你解答,请及时采纳。谢谢!
一、公式法:A的逆阵=(1/|A|)A*,其中A*是A的伴随阵。
二、初等变换法:对分块矩阵(A,E)做行初等变换,前半部分A化成单位阵E时,后半部分E就化成了A的逆阵。
三、猜测法:如果能通过已知条件得出AB=E或BA=E,则B就是A的逆矩阵。
逆矩阵怎么求?
逆矩阵的求法:
1、利用定义求逆矩阵
设A、B都是n阶方阵, 如果存在n阶方阵B 使得AB=BA=E, 则称A为可逆矩阵, 而称B为A的逆矩阵。
2、运用初等行变换法
将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵B=(A,I])对B施行初等行变换,即对A与I进行完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A的逆矩阵。
3、增广矩阵法
如果要求逆的矩阵是A,则对增广矩阵(A E)进行初等行变换,E是单位矩阵,将A化到E,此时此矩阵的逆就是原来E的位置上的那个矩阵,原理是 A逆乘以(A E)= (E A逆)初等行变换就是在矩阵的左边乘以A的逆矩阵得到的。
4、待定系数法
待定系数法顾名思义就是对未知数进行求解。用一个新的包含未定因子的多项式来表达多项式,从而获得一个恒等式。接着,利用恒等式的特性,推导出一类系数必须满足的方程或方程,再由方程组或方程组得到待确定的系数,或确定各系数之间的对应关系,称为待定系数法。