本文目录一览:
- 1、arctanx的导数怎么求
- 2、arctanx的求导公式是什么?
- 3、求y=arctanx的导数
- 4、arctanx的导数是什么
- 5、arctanx的导数是什么?
- 6、arctan x求导详细过程
arctanx的导数怎么求
解arctanx的导数是什么:y=arctanxarctanx的导数是什么,则x=tany
arctanx′=1/tany′
tany′=(siny/cosy)′=cosycosy-siny(-siny)/cos²y=1/cos²y
则arctanx′=cos²y=cos²y/sin²y+cos²y=1/1+tan²y=1/1+x²
y=arctanxarctanx的导数是什么,所以tany=x此时等式两边都求导
得y’tany’=1则y’=1/tany’因y’=arctanx’
所以arctanx’=1/tany’
而tany’=(siny/cosy)’=(siny’cosy-sinycosy’)/cosy的平方=(cosy的平方+siny的平方)/cos的平方=1+tany的平方=1+x的平方。
导函数
如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了贡献。
以上内容参考arctanx的导数是什么:百度百科-导数
arctanx的求导公式是什么?
设x=tany
tany'=sex^y
arctanx'=1/(tany)'=1/sec^y
sec^y=1+tan^y=1+x^2
所以(arctanx)'=1/(1+x^2)
对于双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂arctanx的导数是什么的复合函数求导时通过查阅导数表和运用开头arctanx的导数是什么的公式与 4.y=u土v,y'=u'土v' 5.y=uv,y=u'v+uv' 均能较快捷地求得结果。
扩展资料arctanx的导数是什么:
在推导arctanx的导数是什么的过程中有这几个常见的公式需要用到:
⒈(链式法则)y=f[g(x)],y'=f'[g(x)]·g'(x)『f'[g(x)]中g(x)看作整个变量arctanx的导数是什么,而g'(x)中把x看作变量』
2. y=u*v,y'=u'v+uv'(一般的leibniz公式)
3.y=u/v,y'=(u'v-uv')/v^2,事实上4.可由3.直接推得
4.(反函数求导法则)y=f(x)的反函数是x=g(y),则有y'=1/x'
正切函数y=tanx在开区间(x∈(-π/2,π/2))的反函数,记作y=arctanx 或 y=tan-1x,叫做反正切函数。它表示(-π/2,π/2)上正切值等于 x 的那个唯一确定的角,即tan(arctan x)=x,反正切函数的定义域为R即(-∞,+∞)。反正切函数是反三角函数的一种。
由于正切函数y=tanx在定义域R上不具有一一对应的关系,所以不存在反函数。注意这里选取是正切函数的一个单调区间。而由于正切函数在开区间(-π/2,π/2)中是单调连续的,因此,反正切函数是存在且唯一确定的。
引进多值函数概念后,就可以在正切函数的整个定义域(x∈R,且x≠kπ+π/2,k∈Z)上来考虑它的反函数,这时的反正切函数是多值的,记为 y=Arctan x,定义域是(-∞,+∞),值域是 y∈R,y≠kπ+π/2,k∈Z。于是,把 y=arctan x (x∈(-∞,+∞),y∈(-π/2,π/2))称为反正切函数的主值,而把 y=Arctan x=kπ+arctan x (x∈R,y∈R,y≠kπ+π/2,k∈Z)称为反正切函数的通值。反正切函数在(-∞,+∞)上的图像可由区间(-π/2,π/2)上的正切曲线作关于直线 y=x 的对称变换而得到。
反正切函数的大致图像如图所示,显然与函数y=tanx,(x∈R)关于直线y=x对称,且渐近线为y=π/2和y=-π/2。
求y=arctanx的导数
y=arctanx,则x=tany
arctanx′=1/tany′
tany′=(siny/cosy)′=cosycosy-siny(-siny)/cos²y=1/cos²y
则arctanx′=cos²y=cos²y/sin²y+cos²y=1/1+tan²y=1/1+x²
故最终答案是1/1+x²
希望能帮到你
arctanx的导数是什么
x=tany
y= arctanx
dx/dy =1/sec^2(y)=1/(1+tan^2(y))=1/(1+x^2)
y'(x)=1/1+x^2
扩展资料:
三角函数求导公式:
(arcsinx)'=1/(1-x^2)^1/2
(arccosx)'=-1/(1-x^2)^1/2
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(arcsecx)'=1/(|x|(x^2-1)^1/2)
(arccscx)'=-1/(|x|(x^2-1)^1/2)
arctanx的导数是什么?
arctanxarctanx的导数是什么的导数:y=arctanxarctanx的导数是什么,x=tanyarctanx的导数是什么,d/dy=sec²=tan2y+I。
arctanx (即Arctangent)指反正切函数。反函数与原函数关于y=xarctanx的导数是什么的对称点arctanx的导数是什么的导数互为倒数。设原函数为y=f(x),则其反函数在y点的导数与f'(x)互为倒数(即原函数,前提要f'(x)存在且不为0)。
反函数求导法则:
如果函数x=f(y)x=f(y)在区间IyIy内单调、可导且f’(y)/0f'(y)/0, 那么它的反函数y=f-1(x)y=f-1(x)在区间Ix={x|x=f(y), yEIy}Ix={x|x=f(y), yEIy}内也可导,且:
[f-1(x)]'=1f'(y)或dydx=1dxdy
[f-1(x)]'=1f'(y)或dydx=1dxdy
这个结论可以简单表达为:反函数的导数等于直接函数导数的倒数。
arctan x求导详细过程
结果为:1/1+x²
解题过程如下:
∵y=arctanx
∴x=tany
arctanx′=1/tany′
tany′=(siny/cosy)′
=cosycosy-siny(-siny)/cos²y
=1/cos²y
则arctanx′=cos²y
=cos²y/sin²y+cos²y
=1/1+tan²y
=1/1+x²
扩展资料
求导公式:
1、C'=0(C为常数);
2、(Xn)'=nX(n-1) (n∈R);
3、(sinX)'=cosX;
4、(cosX)'=-sinX;
5、(aX)'=aXIna (ln为自然对数);
6、(logaX)'=1/(Xlna) (a0,且a≠1);
7、(tanX)'=1/(cosX)2=(secX)2
8、(cotX)'=-1/(sinX)2=-(cscX)2
9、(secX)'=tanX secX;
10、(cscX)'=-cotX cscX;
求导方法:
求导是微积分的基础,同时也是微积分计算的一个重要的支柱。物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。
若
中存在隐函数
,这里仅是说y为一个x的函数并非说y一定被反解出来为显式表达。即
,尽管y未反解出来,只要y关于x的隐函数存在且可导,我们利用复合函数求导法则则仍可以求出其反函数。