本文目录一览:
- 1、对数函数乘法怎么算
- 2、高中数学:同底的对数相乘怎么算
- 3、同底的两个对数相乘怎么算
- 4、对数相乘怎么算
- 5、对数函数相乘怎么算,求求求求大神
- 6、怎样计算对数乘法
对数函数乘法怎么算
两个20以内数的乘法 两个20以内数相乘,将一数的个位数与另一个数相加乘以10,然后再加两个尾数的积,就是应求的得数。如12×13=156,计算程序是将12的尾数2,加至13里,13加2等于15,15×10=150,然后加各个尾数的积得156,就是应求的积数。 首同尾互补的乘法 两个十位数相乘,首尾数相同,而尾十互补,其计算方法是:头加1,然后头乘为前积,尾乘尾为后积,两积连接起来,就是应求的得数。如26×24=624。计算程序是:被乘数26的头加1等于3,然后头乘头,就是3×2=6,尾乘尾6×4=24,相连为624。 乘数加倍,加半或减半的乘法 在首同尾互补的计算上,可以引深一步就是乘数可加倍,加半倍,也可减半计算,但是:加倍、加半或减半都不能有进位数或出现小数,如48×42是规定的算法,然而,可以将乘数42加倍位84,也可以减半位21,也可加半倍位63,都可以按规定方法计算。48×21=1008,48×63=3024,48×84=4032。有进位数的不能算。如87×83=7221,将83加倍166,或减半41.5,这都不能按规定的方法计算。 首尾互补与首尾相同的乘法
高中数学:同底的对数相乘怎么算
同底的对数相乘没有公式,结合具体题目分析
lnalnb=ln[b^(lna)]相当于乘方。
=lnblna=ln[a^lnb]
b^lna=a^lnb
例如:
解:由已知条件得
log23·log34·log45·log56·log67·log78·log8m
=log23
=log2m=log327=3
所以m=8
一般函数:
y=logax(a0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。
同底的两个对数相乘怎么算
两对数相乘无法利用对数对数相乘怎么算的运算性质求解对数相乘怎么算,因此在解决此类问题时对数相乘怎么算,要根据所给的关系式认真分析其结构特点对数相乘怎么算,主要有三种处理方法:①利用换底公式;②整体考虑;③化各对数为和差的形式。
例设log23·log34·log45·log56·log67·log78·log8m=log327,求m的值。
分析:已知等式是七个对数之积,其特点是:从第二个对数开始的每一个对数的底数是前一个对数的真数,真数是后一个对数的底数,因此采用换底公式将各对数换成以2为底的两个对数的商,然后约分可达到目的。
解:由已知条件得
log23·log34·log45·log56·log67·log78·log8m
=log23·
=log2m=log327=3
所以m=8。
扩展资料
底数不统一
对数的运算性质是建立在底数相同的基础上的,但实际问题中,却经常要遇到底数不相同的情况,碰到这种情形,该如何来突破呢对数相乘怎么算?主要有三种处理的方法:
(1)化为指数式
对数函数与指数函数互为反函数,它们之间有着密切的关系:logaN=bab=N,因此在处理有关对数问题时,经常将对数式化为指数式来帮助解决。
(2)利用换底公式统一底数
换底公式可以将底数不同的对数通过换底把底数统一起来,然后再利用同底对数相关的性质求解。
(3)利用函数图象
函数图象可以将函数的有关性质直观地显现出来,当对数的底数不相同时,可以借助对数函数的图象直观性来理解和寻求解题的思路。
对数相乘怎么算
两对数相乘无法利用对数的运算性质求解,因此在解决此类问题时,要根据所给的关系式认真分析其结构特点,主要有三种处理方法:
1、利用换底公式;
2、整体考虑;
3、化各对数为和差的形式。
举题说明:log2 25•log3 4•log5 9
解:原式=log2 5² × log3 2² ×log5 3²
=2log2 5 × 2log3 2 × 2log5 3
=8 【(lg5)/(lg2)】 × 【(lg2)/(lg3)】 × 【(lg3)/(lg5)】
=8
扩展资料:
对数的运算法则:
1、log(a) (M·N)=log(a) M+log(a) N
2、log(a) (M÷N)=log(a) M-log(a) N
3、log(a) M^n=nlog(a) M
4、log(a)b*log(b)a=1
5、log(a) b=log (c) b÷log (c) a
指数的运算法则:
1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】
2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】
3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】
4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】
对数函数相乘怎么算,求求求求大神
两个20以内数对数相乘怎么算的乘法 两个20以内数相乘,将一数对数相乘怎么算的个位数与另一个数相加乘以10,然后再加两个尾数的积,就是应求的得数。如12×13=156,计算程序是将12的尾数2,加至13里,13加2等于15,15×10=150,然后加各个尾数的积得156,就是应求的积数。 首同尾互补的乘法 两个十位数相乘,首尾数相同,而尾十互补,其计算方法是:头加1,然后头乘为前积,尾乘尾为后积,两积连接起来,就是应求的得数。如26×24=624。计算程序是:被乘数26的头加1等于3,然后头乘头,就是3×2=6,尾乘尾6×4=24,相连为624。 乘数加倍,加半或减半的乘法 在首同尾互补的计算上,可以引深一步就是乘数可加倍,加半倍,也可减半计算,但是:加倍、加半或减半都不能有进位数或出现小数,如48×42是规定的算法,然而,可以将乘数42加倍位84,也可以减半位21,也可加半倍位63,都可以按规定方法计算。48×21=1008,48×63=3024对数相乘怎么算,48×84=4032。有进位数的不能算。如87×83=7221,将83加倍166,或减半41.5,这都不能按规定的方法计算。 首尾互补与首尾相同的乘法
怎样计算对数乘法
对数的概念英语名词:logarithms
如果a^n=b,那么log(a)(b)=n。其中,a叫做“底数”,b叫做“真数”,n叫做“以a为底b的对数”。
log(a)(b)函数叫做对数函数。对数函数中b的定义域是b0,零和负数没有对数对数相乘怎么算;a的定义域是a0且a≠1。 [编辑本段]对数的性质及推导定义:
若a^n=b(a0且a≠1)
则n=log(a)(b)
基本性质:
1、a^(log(a)(b))=b
2、log(a)(a^b)=b
3、log(a)(MN)=log(a)(M)+log(a)(N);
4、log(a)(M÷N)=log(a)(M)-log(a)(N);
5、log(a)(M^n)=nlog(a)(M)
6、log(a^n)M=1/nlog(a)(M)
推导
1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。
2、因为a^b=a^b
令t=a^b
所以a^b=t,b=log(a)(t)=log(a)(a^b)
3、MN=M×N
由基本性质1(换掉M和N)
a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N)
由指数的性质
a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}
两种方法只是性质不同,采用方法依实际情况而定
又因为指数函数是单调函数,所以
log(a)(MN) = log(a)(M) + log(a)(N)
4、与(3)类似处理
MN=M÷N
由基本性质1(换掉M和N)
a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]
由指数的性质
a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}
又因为指数函数是单调函数,所以
log(a)(M÷N) = log(a)(M) - log(a)(N)
5、与(3)类似处理
M^n=M^n
由基本性质1(换掉M)
a^[log(a)(M^n)] = {a^[log(a)(M)]}^n
由指数的性质
a^[log(a)(M^n)] = a^{[log(a)(M)]*n}
又因为指数函数是单调函数,所以
log(a)(M^n)=nlog(a)(M)
基本性质4推广
log(a^n)(b^m)=m/n*[log(a)(b)]
推导如下:
由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]
log(a^n)(b^m)=ln(b^m)÷ln(a^n)
换底公式的推导:
设e^x=b^m,e^y=a^n
则log(a^n)(b^m)=log(e^y)(e^x)=x/y
x=ln(b^m),y=ln(a^n)
得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)
由基本性质4可得
log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]}
再由换底公式
log(a^n)(b^m)=m÷n×[log(a)(b)] --------------------------------------------(性质及推导 完) [编辑本段]函数图象1.对数函数的图象都过(1,0)点.
2.对于y=log(a)(n)函数,
①,当0a1时,图象上函数显示为(0,+∞)单减.随着a 的增大,图象逐渐以(1,0)点为轴顺时针转动,但不超过X=-1.
②当a1时,图象上显示函数为(0,+∞)单增,随着a的增大,图象逐渐以(1.0)点为轴逆时针转动,但不超过X=1.
3.与其对数相乘怎么算他函数与反函数之间图象关系相同,对数函数和指数函数的图象关于直线y=x对称. [编辑本段]其他性质性质一:换底公式
log(a)(N)=log(b)(N)÷log(b)(a)
推导如下:
N = a^[log(a)(N)]
a = b^[log(b)(a)]
综合两式可得
N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
又因为N=b^[log(b)(N)]
所以 b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]}
所以 log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的}
所以log(a)(N)=log(b)(N) / log(b)(a)
公式二:log(a)(b)=1/log(b)(a)
证明如下:
由换底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数
log(b)(b)=1 =1/log(b)(a) 还可变形得: log(a)(b)×log(b)(a)=1
在实用上,常采用以10为底的对数,并将对数记号简写为lgb,称为常用对数,它适用于求十进伯制整数或小数的对数。例如lg10=1,lg100=lg102=2,lg4000=lg(103×4)=3+lg4,可见只要对某一范围的数编制出对数表,便可利用来计算其他十进制数的对数的近似值。在数学理论上一般都用以无理数e=2.7182818……为底的对数,并将记号 loge。简写为ln,称为自然对数,因为自然对数函数的导数表达式特别简洁,所以显出了它比其他对数在理论上的优越性。历史上,数学工作者们编制了多种不同精确度的常用对数表和自然对数表。但随着电子技术的发展,这些数表已逐渐被现代的电子计算工具所取代